Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803245

RESUMO

Checkpoint inhibitors are slowly being introduced in the care of specific sarcoma subtypes such as undifferentiated pleomorphic sarcoma, alveolar soft part sarcoma, and angiosarcoma even though formal indication is lacking. Proper biomarkers to unravel potential immune reactivity in the tumor microenvironment are therefore expected to be highly warranted. In this study, intratumoral spatial cross presentation was investigated as a novel concept where immune cell composition in the tumor microenvironment was suggested to act as a proxy for immune surveillance. Double immunohistochemistry revealed a prognostic role of direct spatial interactions between CD11c+ antigen-presenting cells (APCs) and CD8+ cells in contrast to each marker alone in a soft tissue sarcoma (STS) cohort of 177 patients from the Karolinska University Hospital (MFS p = 0.048, OS p = 0.025). The survival benefit was verified in multivariable analysis (MFS p = 0.012, OS p = 0.004). Transcriptomics performed in the TCGA sarcoma cohort confirmed the prognostic value of combining CD11c with CD8 (259 patients, p = 0.005), irrespective of FOXP3 levels and in a CD274 (PD-LI)-rich tumor microenvironment. Altogether, this study presents a histopathological approach to link immune surveillance and patient survival in STS. Notably, spatial cross presentation as a prognostic marker is distinct from therapy response-predictive biomarkers such as immune checkpoint molecules of the PD-L1/PD1 pathway.

2.
Sci Rep ; 10(1): 281, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937798

RESUMO

Little attention was given to the interaction between tumor and stromal cells in urothelial bladder carcinoma (UBC). While recent studies point towards the existence of different fibroblast subsets, no comprehensive analyses linking different fibroblast markers to UBC patient survival have been performed so far. Through immunohistochemical analysis of five selected fibroblast markers, namely alpha smooth muscle actin (ASMA), CD90/Thy-1, fibroblast activation protein (FAP), platelet derived growth factor receptor-alpha and -beta (PDGFRa,-b), this study investigates their association with survival and histopathological characteristics in a cohort of 344 UBC patients, involving both, muscle-invasive and non-muscle-invasive cases. The data indicates that combinations of stromal markers are more suited to identify prognostic patient subgroups than single marker analysis. Refined stroma-marker-based patient stratification was achieved through cluster analysis and identified a FAP-dominant patient cluster as independent marker for shorter 5-year-survival (HR(95% CI)2.25(1.08-4.67), p = 0.030). Analyses of interactions between fibroblast and CD8a-status identified a potential minority of cases with CD90-defined stroma and high CD8a infiltration showing a good prognosis of more than 80% 5-year-survival. Presented analyses point towards the existence of different stroma-cell subgroups with distinct tumor-modulatory properties and motivate further studies aiming to better understand the molecular tumor-stroma crosstalk in UBC.


Assuntos
Fibroblastos/metabolismo , Neoplasias da Bexiga Urinária/patologia , Actinas/metabolismo , Idoso , Biomarcadores Tumorais/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Análise por Conglomerados , Endopeptidases , Feminino , Fibroblastos/citologia , Gelatinases/metabolismo , Humanos , Estimativa de Kaplan-Meier , Masculino , Proteínas de Membrana/metabolismo , Fenótipo , Prognóstico , Modelos de Riscos Proporcionais , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Serina Endopeptidases/metabolismo , Antígenos Thy-1/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/mortalidade
3.
Glia ; 68(2): 316-327, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31509308

RESUMO

Glioblastoma (GBM) is a deadly disease with a need for deeper understanding and new therapeutic approaches. The microenvironment of glioblastoma has previously been shown to guide glioblastoma progression. In this study, astrocytes were investigated with regard to their effect on glioblastoma proliferation through correlative analyses of clinical samples and experimental in vitro and in vivo studies. Co-culture techniques were used to investigate the GBM growth enhancing potential of astrocytes. Cell sorting and RNA sequencing were used to generate a GBM-associated astrocyte signature and to investigate astrocyte-induced GBM genes. A NOD scid GBM mouse model was used for in vivo studies. A gene signature reflecting GBM-activated astrocytes was associated with poor prognosis in the TCGA GBM dataset. Two genes, periostin and serglycin, induced in GBM cells upon exposure to astrocytes were expressed at higher levels in cases with high "astrocyte signature score". Astrocytes were shown to enhance glioblastoma cell growth in cell lines and in a patient-derived culture, in a manner dependent on cell-cell contact and involving increased cell proliferation. Furthermore, co-injection of astrocytes with glioblastoma cells reduced survival in an orthotopic GBM model in NOD scid mice. In conclusion, this study suggests that astrocytes contribute to glioblastoma growth and implies this crosstalk as a candidate target for novel therapies.


Assuntos
Astrócitos/metabolismo , Neoplasias Encefálicas/metabolismo , Movimento Celular/fisiologia , Glioblastoma/metabolismo , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Técnicas de Cocultura , Modelos Animais de Doenças , Glioblastoma/patologia , Glioma/metabolismo , Humanos , Camundongos Endogâmicos NOD
4.
Glia ; 68(5): 979-988, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31769546

RESUMO

The microenvironment and architecture of peritumoral tissue have been suggested to affect permissiveness for infiltration of malignant cells. Astrocytes constitute a heterogeneous population of cells and have been linked to proliferation, migration, and drug sensitivity of glioblastoma (GBM) cells. Through double-immunohistochemical staining for platelet-derived growth factor receptor α (PDGFRα) and glial fibrillary acidic protein (GFAP), this study explored the intercase variability among 45 human GBM samples regarding density of GFAP+ peritumoral astrocytes and a subset of GFAP+ peritumoral astrocyte-like cells also expressing PDGFRα. Large intercase variability regarding the total peritumoral astrocyte density and the density of PDGFRα+/GFAP+ peritumoral astrocyte-like cells was detected. DNA fluorescence in situ hybridization analyses for commonly altered genetic tumor markers supported the interpretation that these cells represented a genetically unaffected host cell subset referred to as PDGFRα+/GFAP+ peritumoral astrocytes. The presence of PDGFRα+/GFAP+ peritumoral astrocytes was significantly positively correlated to older patient age and peritumoral astrocyte density, but not to other established prognostic factors. Notably, presence of PDGFRα+/GFAP+ peritumoral astrocytes, but not peritumoral astrocyte density, was associated with significantly shorter patient overall survival. The prognostic association of PDGFRα+/GFAP+ peritumoral astrocytes was confirmed in multivariable analyses. This exploratory study thus demonstrates previously unrecognized intercase variability and prognostic significance of peritumoral abundance of a novel PDGFRα+ subset of GFAP+ astrocytes. Findings suggest clinically relevant roles of the microenvironment of peritumoral GBM tissue and encourage further characterization of the novel astrocyte subset with regard to origin, function, and potential as biomarker and drug target.


Assuntos
Astrócitos/metabolismo , Neoplasias Encefálicas/mortalidade , Proteína Glial Fibrilar Ácida/metabolismo , Glioblastoma/mortalidade , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Microambiente Tumoral/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Criança , Feminino , Proteína Glial Fibrilar Ácida/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Prognóstico , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Taxa de Sobrevida , Adulto Jovem
5.
Methods Mol Biol ; 1913: 3-11, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30666595

RESUMO

Immunohistochemistry (IHC) is a commonly used technique for protein detection in tissue sections. The method requires high-affinity antibodies that are specific for the target proteins of interest. More advanced IHC techniques have been developed to meet the need for simultaneous detection of more than one target protein in the same tissue section. This chapter provides general guidelines for double IHC staining of formalin-fixed, paraffin-embedded tissue sections. Chromogenic substrates are chosen based on their excellent contrast and compatibility with the subsequent digital image analysis.


Assuntos
Imunofluorescência/métodos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/patologia , Antígenos CD34/análise , Biomarcadores Tumorais/análise , Imunofluorescência/instrumentação , Humanos , Processamento de Imagem Assistida por Computador/instrumentação , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Inclusão em Parafina/instrumentação , Inclusão em Parafina/métodos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/análise , Software , Fixação de Tecidos/instrumentação , Fixação de Tecidos/métodos
6.
iScience ; 9: 71-83, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30384135

RESUMO

High-grade gliomas (HGGs) are the most aggressive and invasive primary brain tumors. The platelet-derived growth factor (PDGF) signaling pathway drives HGG progression, and enhanced expression of PDGF receptors (PDGFRs) is a well-established aberration in a subset of glioblastomas (GBMs). PDGFRA is expressed in glioma cells, whereas PDGFRB is mostly restricted to the glioma-associated stroma. Here we show that the spatial location of TAMMs correlates with the expansion of a subset of tumor cells that have acquired expression of PDGFRB in both mouse and human low-grade glioma and HCGs. Furthermore, M2-polarized microglia but not bone marrow (BM)-derived macrophages (BMDMs) induced PDGFRB expression in glioma cells and stimulated their migratory capacity. These findings illustrate a heterotypic cross-talk between microglia and glioma cells that may enhance the migratory and invasive capacity of the latter by inducing PDGFRB.

7.
Exp Cell Res ; 359(1): 257-265, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28734865

RESUMO

BACKGROUND: Epithelial to mesenchymal transition (EMT) is considered to be important for cancer invasion and metastasis. Tumour hypoxia, in addition to Transforming Growth Factor-ß (TGF-ß) and Notch, amongst others, have been suggested to be involved in EMT. We therefore investigated if hypoxia, TGF-ß1 and the Notch ligand Jagged-1 alone induced morphological changes with corresponding EMT signatures in different epithelial breast cancer cell lines in vitro. Furthermore, we also studied whether or not TGF-ß1, or Jagged-1 in combination with hypoxia added any effect on EMT. METHODS: The cells were exposed to normoxia or hypoxia alone or in combination with TGF-ß1 or Jagged-1. Morphological responses to treatment were investigated by light microscopy, and changes in markers for EMT and hypoxia were evaluated by western blot analysis and immunofluorescence studies. RESULTS: One of the four cell lines (MCF7) became elongated and highly multipolar, indicative of EMT, following hypoxia, TGF-ß1 and Jagged-1 treatment per se with the most distinct morphological shift seen with Jagged-1 treatment in combination with hypoxia. Also, when regarding hypoxia, MCF7 cells showed the greatest change in EMT-markers of the four cell lines tested, but these changes were not consistent with a typical EMT pattern. The morphology of BT474 cells was not altered following Jagged-1 treatment, however, Jagged-1 increased E-cadherin levels. Morphology was changed following TGF-ß1 treatment of BT474 cells, but it did not affect E-cadherin levels. Neither Jagged-1 nor TGF-ß1 altered the levels of Vimentin in the BT474 cell line. The E-cadherin responses to hypoxia varied with end-point in both MCF7 and BT474 cells, and in most cases were not consistent with EMT. CONCLUSION: Our results using four different breast cancer cell lines in vitro do not provide evidence that EMT is induced by hypoxia alone or in combination with TGF-ß1 or the Notch ligand Jagged-1. The inconsistency in morphological appearance and EMT-markers, as well as the time dependent variation in E-cadherin responses could not support EMT. Importantly, there was not one single common response pattern to the stimuli used, suggesting that cell lines with different hormone statuses display individual traits that respond differently to the stimuli applied. Thus, based on the present results, common statements that single factors by themselves can induce EMT seem questionable.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal , Hormônios/metabolismo , Mesoderma/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Western Blotting , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ligantes , Mesoderma/efeitos dos fármacos , Receptores Notch/metabolismo , Proteínas Serrate-Jagged/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
8.
Pharmacol Res ; 124: 74-91, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28712971

RESUMO

Cancer is a major health issue worldwide, and the global burden of cancer is expected to increase in the coming years. Whereas the limited success with current therapies has driven huge investments into drug development, the average number of FDA approvals per year has declined since the 1990s. This unmet need for more effective anti-cancer drugs has sparked a growing interest for drug repurposing, i.e. using drugs already approved for other indications to treat cancer. As such, data both from pre-clinical experiments, clinical trials and observational studies have demonstrated anti-tumor efficacy for compounds within a wide range of drug classes other than cancer. Whereas some of them induce cancer cell death or suppress various aspects of cancer cell behavior in established tumors, others may prevent cancer development. Here, we provide an overview of promising candidates for drug repurposing in cancer, as well as studies describing the biological mechanisms underlying their anti-neoplastic effects.


Assuntos
Antineoplásicos/uso terapêutico , Reposicionamento de Medicamentos , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Animais , Humanos
9.
BMC Cancer ; 17(1): 108, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28173797

RESUMO

BACKGROUND: Little is known about the role of glial host cells in brain tumours. However, supporting stromal cells have been shown to foster tumour growth in other cancers. METHODS: We isolated stromal cells from patient-derived glioblastoma (GBM) xenografts established in GFP-NOD/scid mice. With simultaneous removal of CD11b+ immune and CD31+ endothelial cells by fluorescence activated cell sorting (FACS), we obtained a population of tumour-associated glial cells, TAGs, expressing markers of terminally differentiaed glial cell types or glial progenitors. This cell population was subsequently characterised using gene expression analyses and immunocytochemistry. Furthermore, sphere formation was assessed in vitro and their glioma growth-promoting ability was examined in vivo. Finally, the expression of TAG related markers was validated in human GBMs. RESULTS: TAGs were highly enriched for the expression of glial cell proteins including GFAP and myelin basic protein (MBP), and immature markers such as Nestin and O4. A fraction of TAGs displayed sphere formation in stem cell medium. Moreover, TAGs promoted brain tumour growth in vivo when co-implanted with glioma cells, compared to implanting only glioma cells, or glioma cells and unconditioned glial cells from mice without tumours. Genome-wide microarray analysis of TAGs showed an expression profile distinct from glial cells from healthy mice brains. Notably, TAGs upregulated genes associated with immature cell types and self-renewal, including Pou3f2 and Sox2. In addition, TAGs from highly angiogenic tumours showed upregulation of angiogenic factors, including Vegf and Angiopoietin 2. Immunohistochemistry of three GBMs, two patient biopsies and one GBM xenograft, confirmed that the expression of these genes was mainly confined to TAGs in the tumour bed. Furthermore, their expression profiles displayed a significant overlap with gene clusters defining prognostic subclasses of human GBMs. CONCLUSIONS: Our data demonstrate that glial host cells in brain tumours are functionally distinct from glial cells of healthy mice brains. Furthermore, TAGs display a gene expression profile with enrichment for genes related to stem cells, immature cell types and developmental processes. Future studies are needed to delineate the biological mechanisms regulating the brain tumour-host interplay.


Assuntos
Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Glioblastoma/metabolismo , Transcriptoma , Animais , Biomarcadores Tumorais , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Análise em Microsséries , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Oncotarget ; 8(7): 12145-12157, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28076333

RESUMO

Surgical resection is a standard component of treatment in the clinical management of patients with glioblastoma multiforme (GBM). However, experimental therapies are rarely investigated in the context of tumor debulking in preclinical models. Here, a surgical debulking GBM xenograft model was developed in nude rats, and was used in combination with CD47 blocking immunotherapy, a novel treatment strategy that triggers phagocytosis of tumor cells by macrophages in diverse cancer types including GBM. Orthotopic patient-derived xenograft tumors expressing CD47 were resected at 4 weeks after implantation and immediately thereafter treated with anti-CD47 or control antibodies injected into the cavity. Debulking prolonged survival (median survival, 68.5 vs 42.5 days, debulking and non-debulking survival times, respectively; n = 6 animals/group; P = 0.0005). Survival was further improved in animals that underwent combination treatment with anti-CD47 mAbs (median survival, 81.5 days vs 69 days, debulking + anti-CD47 vs debulking + control IgG, respectively; P = 0.0007). Immunohistochemistical staining of tumor sections revealed an increase in recruitment of cells positive for CD68, a marker for macrophages/immune cell types, to the surgical site (50% vs 10%, debulking vs non-debulking, respectively). Finally, analysis of tumor protein lysates on antibody microarrays demonstrated an increase in pro-inflammatory cytokines, such as CXCL10, and a decrease in angiogenic proteins in debulking + anti-CD47 vs non-debulking + IgG tumors. The results indicated that surgical resection combined with anti-CD47 blocking immunotherapy promoted an inflammatory response and prolonged survival in animals, and is therefore an attractive strategy for clinical translation.


Assuntos
Antígeno CD47/metabolismo , Procedimentos Cirúrgicos de Citorredução/métodos , Glioblastoma/terapia , Imunoterapia/métodos , Macrófagos/metabolismo , Fagocitose , Animais , Anticorpos Bloqueadores/imunologia , Anticorpos Bloqueadores/farmacologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Antígeno CD47/imunologia , Terapia Combinada , Citocinas/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Ratos Nus , Análise de Sobrevida , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Neuro Oncol ; 18(12): 1644-1655, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27286795

RESUMO

BACKGROUND: Amplification of the epidermal growth factor receptor (EGFR) and its mutant EGFRvIII are among the most common genetic alterations in glioblastoma (GBM), the most frequent and most aggressive primary brain tumor. METHODS: In the present work, we analyzed the clonal evolution of these major EGFR aberrations in a small cohort of GBM patients using a unique surgical multisampling technique. Furthermore, we overexpressed both receptors separately and together in 2 patient-derived GBM stem cell lines (GSCs) to analyze their functions in vivo in orthotopic xenograft models. RESULTS: In human GBM biopsies, we identified EGFR amplification as an early event because EGFRvIII mutations emerge from intratumoral heterogeneity later in tumor development. To investigate the biological relevance of this distinct developmental pattern, we established experimental model systems. In these models, EGFR+ tumor cells showed activation of classical downstream signaling pathways upon EGF stimulation and displayed enhanced invasive growth without evidence of angiogenesis in vivo. In contrast, EGFRvIII+ tumors were driven by activation of the prototypical Src family kinase c-Src that promoted VEGF secretion leading to angiogenic tumor growth. CONCLUSIONS: The presented work shows that sequential EGFR amplification and EGFRvIII mutations might represent concerted evolutionary events that drive the aggressive nature of GBM by promoting invasion and angiogenesis via distinct signaling pathways. In particular, c-SRC may be an attractive therapeutic target for tumors harboring EGFRvIII as we identified this protein specifically mediating angiogenic tumor growth downstream of EGFRvIII.


Assuntos
Neoplasias Encefálicas/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Neovascularização Patológica/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Evolução Molecular , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Imagem Multimodal , Mutação , Invasividade Neoplásica , Análise de Sobrevida , Regulação para Cima
12.
J Immunol ; 193(12): 6192-206, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25381437

RESUMO

Glioblastomas (GBMs) are lethal brain cancers that are resistant to current therapies. We investigated the cytotoxicity of human allogeneic NK cells against patient-derived GBM in vitro and in vivo, as well as mechanisms mediating their efficacy. We demonstrate that KIR2DS2 immunogenotype NK cells were more potent killers, notwithstanding the absence of inhibitory killer Ig-like receptor (KIR)-HLA ligand mismatch. FACS-sorted and enriched KIR2DS2(+) NK cell subpopulations retained significantly high levels of CD69 and CD16 when in contact with GBM cells at a 1:1 ratio and highly expressed CD107a and secreted more soluble CD137 and granzyme A. In contrast, KIR2DS2(-) immunogenotype donor NK cells were less cytotoxic against GBM and K562, and, similar to FACS-sorted or gated KIR2DS2(-) NK cells, significantly diminished CD16, CD107a, granzyme A, and CD69 when in contact with GBM cells. Furthermore, NK cell-mediated GBM killing in vitro depended upon the expression of ligands for the activating receptor NKG2D and was partially abrogated by Ab blockade. Treatment of GBM xenografts in NOD/SCID mice with NK cells from a KIR2DS2(+) donor lacking inhibitory KIR-HLA ligand mismatch significantly prolonged the median survival to 163 d compared with vehicle controls (log-rank test, p = 0.0001), in contrast to 117.5 d (log-rank test, p = 0.0005) for NK cells with several inhibitory KIR-HLA ligand mismatches but lacking KIR2DS2 genotype. Significantly more CD56(+)CD16(+) NK cells from a KIR2DS2(+) donor survived in nontumor-bearing brains 3 wk after infusion compared with KIR2DS2(-) NK cells, independent of their proliferative capacity. In conclusion, KIR2DS2 identifies potent alloreactive NK cells against GBM that are mediated by commensurate, but dominant, activating signals.


Assuntos
Citotoxicidade Imunológica/genética , Glioblastoma/genética , Glioblastoma/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Receptores KIR/genética , Transferência Adotiva , Animais , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Expressão Gênica , Genótipo , Glioblastoma/mortalidade , Glioblastoma/patologia , Gliossarcoma/imunologia , Granzimas/genética , Granzimas/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Imunofenotipagem , Ligantes , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Microglia/imunologia , Microglia/metabolismo , Microglia/patologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células-Tronco Neoplásicas/metabolismo , Nestina/genética , Nestina/metabolismo , Prognóstico , Ligação Proteica , Receptores KIR/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
13.
J Transl Med ; 12: 278, 2014 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-25280402

RESUMO

BACKGROUND: Although several studies suggest that stromal fibroblasts mediate treatment resistance in several cancer types, little is known about how tumor-associated astrocytes modulate the treatment response in brain tumors. Since traditionally used metabolic assays do not distinguish metabolic activity between stromal and tumor cells, and since 2-dimensional co-culture system does not recreate the formidable complexity of the microenvironment within 3-dimensional structures such as solid tumor tissue, we instead established a glioblastoma (GBM) cell-specific bioluminescent assay for direct measurements of tumor cell viability in the treatment of clinical relevant drugs. METHODS: Using lentiviral transfection, we established a panel of human GBM cell lines constitutively expressing a fusion transgene encoding luciferase and the enhanced green fluorescence protein (eGFP). We then initiated co-cultures with immortalized astrocytes, TNC-1, and the eGFP/Luc GBM cell lines. Next, we treated all eGFP/Luc GBM cell lines with Temozolomide (TMZ) or Doxorubicin, comparing co-cultures of glioblastoma (GBM) cells and TNC-1 astrocytes with mono-cultures of eGFP/Luc GBM cells. Cell viability was quantitated by measuring the luciferase expression. RESULTS: Titration experiments demonstrated that luciferase expression was proportional to the number of eGFP/Luc GBM cells, whereas it was not influenced by the number of TNC-1 cells present. Notably, the presence of TNC-1 astrocytes mediated significantly higher cell survival after TMZ treatment in the U251, C6, A172 cell lines as well as the in vivo propagated primary GBM tumor cell line (P3). Moreover, TNC-1 astrocytes mediated significantly higher survival after Doxorubicin treatment in the U251, and LN18 glioma cell lines. CONCLUSION: Glioma cell-specific bioluminescent assay is a reliable tool for assessment of cell viability in the brain tumor cell compartment following drug treatment. Moreover, we have applied this assay to demonstrate that astrocytes can modulate chemo sensitivity of GBM tumor cells. These effects varied both with the cell line and cytotoxic drug that were used, suggesting that several mechanisms may be involved.


Assuntos
Astrócitos/patologia , Neoplasias Encefálicas/patologia , Técnicas de Cocultura/métodos , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/patologia , Luminescência , Modelos Biológicos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Compartimento Celular , Contagem de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Humanos , Reprodutibilidade dos Testes , Esferoides Celulares/patologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Temozolomida
14.
Cancer Cell Int ; 14(1): 541, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25663822

RESUMO

BACKGROUD: A key strategy for the study of the tumor microenvironment is to implant human tumor cells in an immunodeficient rodent strain ubiquitously expressing a fluorescent marker. Here, a novel nude rat expressing a green fluorescent protein (GFP) transgene was established and engrafted with primary human tumor tissue in order to separate tumor from stromal cell populations for subsequent molecular analysis. METHODS: SD-TG (GFP) 2BalRrrc transgenic rats were crossed with HsdHan™: rnu/rnu Rowett nude rats to develop a GFP expressing immunocompromised rat. PCR and flow cytometry were used to follow the GFP genotype and phenotype in newborns. After three to four generations, animals were implanted with 4 T1 dsRed murine breast cancer cells or primary human glioblastoma (GBM) biopsies to generate xenografts for subsequent separation by fluorescence-activated cell sorting (FACS). RESULTS: Fluorecence microscopy and reverse transcription-PCR demonstrated that GFP, under the control of the human ubiquitin C promoter, was stably maintained and expressed in diverse organs over several generations. Immunophenotyping of blood samples by flow cytometry confirmed that the immunodeficient features of the parental rat strain, HsdHan™: rnu/rnu, were retained in the GFP nude rat. Both the murine cell line and human GBM biopsies engrafted, and stromal cell populations were isolated from dissociated xenografts by FACS to > 95% purity. CONCLUSIONS: A GFP transgene was stably introduced into a nude rat background in which human and murine cancer cells successfully engrafted. This animal strain provides a novel in vivo system for detailed cellular and molecular characterization of tumor-stroma interactions.

15.
BMC Cancer ; 11: 524, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22185371

RESUMO

BACKGROUND: Expression of neuronal elements has been identified in various glial tumors, and glioblastomas (GBMs) with neuronal differentiation patterns have reportedly been associated with longer survival. However, the neuronal class III ß-tubulin has been linked to increasing malignancy in astrocytomas. Thus, the significance of neuronal markers in gliomas is not established. METHODS: The expressions of class III ß-tubulin, neurofilament protein (NFP), microtubule-associated protein 2 (MAP2) and neuron-specific enolase (NSE) were investigated in five GBM cell lines and two GBM biopsies with immunocytochemistry and Western blot. Moreover, the expression levels were quantified by real-time qPCR under different culture conditions. Following NSE siRNA treatment we used Electric cell-substrate impedance sensing (ECIS) to monitor cell growth and migration and MTS assays to study viability after irradiation and temozolomide treatment. Finally, we quantitated NSE expression in a series of human glioma biopsies with immunohistochemistry using a morphometry software, and collected survival data for the corresponding patients. The biopsies were then grouped according to expression in two halves which were compared by survival analysis. RESULTS: Immunocytochemistry and Western blotting showed that all markers except NFP were expressed both in GBM cell lines and biopsies. Notably, qPCR demonstrated that NSE was upregulated in cellular stress conditions, such as serum-starvation and hypoxia, while we found no uniform pattern for the other markers. NSE knockdown reduced the migration of glioma cells, sensitized them to hypoxia, radio- and chemotherapy. Furthermore, we found that GBM patients in the group with the highest NSE expression lived significantly shorter than patients in the low-expression group. CONCLUSIONS: Neuronal markers are aberrantly expressed in human GBMs, and NSE is consistently upregulated in different cellular stress conditions. Knockdown of NSE reduces the migration of GBM cells and sensitizes them to hypoxia, radiotherapy and chemotherapy. In addition, GBM patients with high NSE expression had significantly shorter survival than patients with low NSE expression. Collectively, these data suggest a role for NSE in the adaption to cellular stress, such as during treatment.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas , Dacarbazina/análogos & derivados , Glioma , Proteínas de Neurofilamentos/metabolismo , Fosfopiruvato Hidratase/metabolismo , Adulto , Idoso , Biópsia , Western Blotting , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/efeitos da radiação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Dacarbazina/farmacologia , Impedância Elétrica , Feminino , Técnicas de Inativação de Genes , Glioblastoma/metabolismo , Glioblastoma/terapia , Glioma/metabolismo , Glioma/terapia , Humanos , Imuno-Histoquímica , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Temozolomida , Tubulina (Proteína)/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...